Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$,

then $4 x^{2}-4 x y \cos \alpha+y^{2}$ is equal to
MathematicsInverse Trigonometric FunctionsBITSATBITSAT 2015
Options:
  • A $2 \sin 2 \alpha$
  • B 4
  • C $4 \sin ^{2} \alpha$
  • D $-4 \sin ^{2} \alpha$
Solution:
1278 Upvotes Verified Answer
The correct answer is: $4 \sin ^{2} \alpha$
$\cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$

$\Rightarrow \cos ^{-1}\left(\frac{x y}{2}+\sqrt{\left(1-x^{2}\right)\left(1-\frac{y^{2}}{4}\right)}\right)=\alpha$

$\Rightarrow \cos ^{-1}\left(\frac{x y+\sqrt{4-y^{2}-4 x^{2}+x^{2} y^{2}}}{2}\right)=\alpha$

$\Rightarrow 4 x^{2}+y^{2}-4 x y \cos \alpha=4 \sin ^{2} \alpha$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.