Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \( \cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha \), then \( 4 x^{2}-4 x y \cos \alpha+y^{2} \) is equal to
MathematicsInverse Trigonometric FunctionsJEE Main
Options:
  • A \( 4 \)
  • B \( 2 \sin 2 \alpha \)
  • C \( -4 \sin ^{2} \alpha \)
  • D \( 4 \sin ^{2} \alpha \)
Solution:
1457 Upvotes Verified Answer
The correct answer is: \( 4 \sin ^{2} \alpha \)

Given,

cos-1x-cos-1y2=α     ...i         
let  A=cos-1xB= cos-1y2
   cosA=x, cosB=y2     ...ii                
Using equation i  ⇒    A - B = α
       ⇒   cosA-B=cos α
       ⇒    cos A  cos B + sin A  sin B = cos  α
       ⇒   xy 2 + 1 - x 2   1 - y 2 4 = cos  α    Using equation ii
⇒   cos α - xy 2 2 = 1 - x 2   1 - y 2 4
⇒  cos2α+x2y24-xy cos α=1-y24-x2+x2y24

⇒  y24+x2-xy cos α=1-cos2α
⇒   x 2 + y 2 4 - xy  cos  α = sin 2 α
⇒   4 x 2 - 4 xy  cos  α + y 2 = 4 sin 2 α .

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.