Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\cos 2 \theta=\sin \propto, \quad$ then $\theta=$
MathematicsTrigonometric Ratios & IdentitiesMHT CETMHT CET 2020 (12 Oct Shift 1)
Options:
  • A $2 n \pi \pm\left(\frac{\pi}{2}-\alpha\right), n \in z$
  • B $n \pi \pm\left(\frac{\pi}{4}+\frac{\alpha}{2}\right), n \in z$
  • C $\frac{1}{2}\left[n \pi+(-1)^{n} \propto\right], n \in z$
  • D $n \pi \pm\left(\frac{\pi}{4}-\frac{\alpha}{2}\right), n \in z$
Solution:
1264 Upvotes Verified Answer
The correct answer is: $n \pi \pm\left(\frac{\pi}{4}-\frac{\alpha}{2}\right), n \in z$
We have $\cos 2 \theta=\sin \alpha \Rightarrow \cos 2 \theta=\cos (90-\alpha)$ When $\cos \theta=\cos \alpha$, we get $\theta=2 n \pi \pm \alpha, n \in Z$ $\therefore \quad 2 \theta=2 \mathrm{n} \pi \pm(90-\alpha)$
$\theta=\frac{2 n \pi}{2} \pm\left(\frac{90-\alpha}{2}\right) \Rightarrow \theta=n \pi \pm\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.