Search any question & find its solution
Question:
Answered & Verified by Expert
If $\cos \theta-4 \sin \theta=1$, then $\sin \theta+4 \cos \theta$ is equal to
Options:
Solution:
1041 Upvotes
Verified Answer
The correct answer is:
$\pm 4$

On squaring both sides of equation (i)
$\begin{array}{rlrl}
& \cos ^2 \theta+16 \sin ^2 \theta-8 \sin \theta \cos \theta & =1 \\
\Rightarrow & & 15 \sin ^2 \theta-8 \sin \theta \cos \theta & =0 \\
\Rightarrow & & \sin \theta(15 \sin \theta-8 \cos \theta) & =0 \\
\Rightarrow & & \sin \theta=0 \text { or } \tan \theta & =\frac{8}{15}
\end{array}$
but $\tan \theta$ is not satisfy the equation (i)
$\begin{aligned}
& \therefore \quad \sin \theta=0 \\
& \Rightarrow \quad \theta=0, \pi \\
& \text { at } \\
& \theta=0 \\
& \sin \theta+4 \cos \theta=0+4=4 \\
& \text { at } \\
& \theta=\pi \\
& \sin \theta+4 \cos \theta=0-4=-4 \\
&
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.