Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\quad$ If $\cos 7 \theta=\cos \theta-\sin 4 \theta,$ then the general value

of $\theta$ is
MathematicsTrigonometric EquationsBITSATBITSAT 2013
Options:
  • A $\frac{n \pi}{6}, \frac{n \pi}{3}+(-1)^{n} \frac{\pi}{18}$
  • B $\frac{n \pi}{3}, \frac{n \pi}{3}+(-1)^{n} \frac{\pi}{18}$
  • C $\frac{n \pi}{4}, \frac{n \pi}{3} \pm \frac{\pi}{18}$
  • D $\frac{n \pi}{4}, \frac{n \pi}{3}+(-1)^{n} \frac{\pi}{18}$
Solution:
1376 Upvotes Verified Answer
The correct answer is: $\frac{n \pi}{4}, \frac{n \pi}{3}+(-1)^{n} \frac{\pi}{18}$
$\cos 7 \theta=\cos \theta-\sin 4 \theta$

$\Rightarrow \sin 4 \theta=\cos \theta-\cos 7 \theta$

$\Rightarrow \sin 4 \theta=2 \sin 4 \theta \sin 3 \theta$

$\Rightarrow \sin 4 \theta(1-2 \sin 3 \theta)=0$

$\therefore \sin 4 \theta=0$ or $\sin 3 \theta=\frac{1}{2}$

$\Rightarrow 4 \theta=n \pi$ or $3 \theta=n \pi+(-1)^{n} \frac{\pi}{6}$

$\Rightarrow \quad \theta=\frac{n \pi}{4}$ or $\frac{n \pi}{3}+(-1)^{n} \frac{\pi}{18}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.