Search any question & find its solution
Question:
Answered & Verified by Expert
If $\cos \theta-\sin \theta=\sqrt{5} \sin \theta$, then $\cos \theta+4 \sin \theta=$
Options:
Solution:
2787 Upvotes
Verified Answer
The correct answer is:
$\sqrt{5} \cos \theta$
$\cos \theta-\sin \theta=\sqrt{5} \sin \theta$
$\begin{aligned} & (\cos \theta-\sin \theta)^2=(\sqrt{5} \sin \theta)^2 \\ & \cos ^2 \theta+\sin ^2 \theta-2 \sin \theta \cos \theta=5 \sin ^2 \theta \\ & 1-2 \sin \theta \cos \theta=5 \sin ^2 \theta \\ & 1-5 \sin ^2 \theta=2 \sin \theta \cos \theta\end{aligned}$
$Now,$
$(\cos \theta+4 \sin \theta)^2=\cos ^2 \theta+16 \sin ^2 \theta+4.2 \sin \theta \cos \theta$
$\begin{aligned} & =\cos ^2 \theta+16 \sin ^2 \theta+\left(1-5 \sin ^2 \theta\right) \\ & =\cos ^2 \theta+16 \sin ^2 \theta+4-20 \sin ^2 \theta \\ & =\cos ^2 \theta-4 \sin ^2 \theta+4 \\ & =\cos ^2 \theta+4\left(1-\sin ^2 \theta\right) \\ & =\cos ^2 \theta+4 \cos ^2 \theta \\ & =5 \cos ^2 \theta\end{aligned}$
$\cos \theta+4 \sin \theta=\sqrt{5 \cos ^2 \theta}$
$=\sqrt{5} \cdot \cos \theta$
$\begin{aligned} & (\cos \theta-\sin \theta)^2=(\sqrt{5} \sin \theta)^2 \\ & \cos ^2 \theta+\sin ^2 \theta-2 \sin \theta \cos \theta=5 \sin ^2 \theta \\ & 1-2 \sin \theta \cos \theta=5 \sin ^2 \theta \\ & 1-5 \sin ^2 \theta=2 \sin \theta \cos \theta\end{aligned}$
$Now,$
$(\cos \theta+4 \sin \theta)^2=\cos ^2 \theta+16 \sin ^2 \theta+4.2 \sin \theta \cos \theta$
$\begin{aligned} & =\cos ^2 \theta+16 \sin ^2 \theta+\left(1-5 \sin ^2 \theta\right) \\ & =\cos ^2 \theta+16 \sin ^2 \theta+4-20 \sin ^2 \theta \\ & =\cos ^2 \theta-4 \sin ^2 \theta+4 \\ & =\cos ^2 \theta+4\left(1-\sin ^2 \theta\right) \\ & =\cos ^2 \theta+4 \cos ^2 \theta \\ & =5 \cos ^2 \theta\end{aligned}$
$\cos \theta+4 \sin \theta=\sqrt{5 \cos ^2 \theta}$
$=\sqrt{5} \cdot \cos \theta$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.