Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\int \cos x \log \left(\tan \frac{x}{2}\right) d x$$=\sin x \log \left(\tan \frac{x}{2}\right)+f(x),$ then $f(x)$ is equal to (assuming $c$ is a arbitrary real constant)
MathematicsIndefinite IntegrationWBJEEWBJEE 2019
Options:
  • A $c$
  • B $c-x$
  • C $c+x$
  • D $2 x+c$
Solution:
2215 Upvotes Verified Answer
The correct answer is: $c-x$
Let $I=\int \cos x \log \left(\tan \frac{x}{2}\right)$
$=\log \left(\tan \frac{x}{2}\right) \cdot \sin x-\int \sin x \cdot \frac{1}{\tan \frac{x}{2}} \cdot \sec ^{2} \frac{x}{2} \cdot \frac{1}{2} d x$
$=\sin x \log \left(\tan \frac{x}{2}\right)-\int \sin x \frac{1}{2 \sin \frac{x}{2} \cos \frac{x}{2}} d x$
$=\sin x \cdot \log \left(\tan \frac{x}{2}\right)-\int \frac{\sin x}{\sin x} d x$
$=\sin x \cdot \log \left(\tan \frac{x}{2}\right)-\int 1 d x$
$=\sin x \log \left(\tan \frac{x}{2}\right)-x+c$
$\therefore f(x)=c-x$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.