Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\cos x=\tan y, \cot y=\tan z$ and $\cot z=\tan x$, then $\sin x$ equals to
MathematicsTrigonometric Ratios & IdentitiesAP EAMCETAP EAMCET 2014
Options:
  • A $\frac{\sqrt{5}+1}{4}$
  • B $\frac{\sqrt{5}-1}{4}$
  • C $\frac{\sqrt{5}+1}{2}$
  • D $\frac{\sqrt{5}-1}{2}$
Solution:
1541 Upvotes Verified Answer
The correct answer is: $\frac{\sqrt{5}-1}{2}$
Given, $\cos x=\tan y, \cot y=\tan z$
and $\cot z=\tan x$
$\therefore \quad \cos x=\tan y$
$\Rightarrow \quad \cos x=\frac{1}{\tan z}$
$\Rightarrow \quad \cos x=\cot z$
$\Rightarrow \quad \cos x=\tan x$
$\Rightarrow \quad \cos x=\frac{\sin x}{\cos x}$
$\Rightarrow \cos ^2 x=\sin x$
$\Rightarrow 1-\sin ^2 x=\sin x$
$\Rightarrow \sin ^2 x+\sin x-1=0$
$\begin{aligned} \therefore \quad \sin x & =\frac{-1 \pm \sqrt{1-4 \times(-1)}}{2 \times 1} \\ & =\frac{-1 \pm \sqrt{5}}{2} \\ \therefore \sin x=\frac{\sqrt{5}-1}{2} & \left(\because \frac{-1-\sqrt{5}}{2} < -1\right)\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.