Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \( \cos x=|\sin x| \) then, the general solution is
MathematicsTrigonometric EquationsKCETKCET 2019
Options:
  • A \( x=2 n \pi \pm \frac{\Pi}{4}, n \in z \)
  • B \( x=(2 n+1) \pi \pm \frac{I}{4}, n \in Z \)
  • C \( x=n \pi \pm \frac{\Pi}{4}, n \in Z \)
  • D \( x=n \pi \pm(-1)^{n} \frac{\Pi}{4}, n \in Z \)
Solution:
1948 Upvotes Verified Answer
The correct answer is: \( x=2 n \pi \pm \frac{\Pi}{4}, n \in z \)
(A)
$\cos x=|\sin x|$
$\Rightarrow \pm \cos x=\sin x$
$\Rightarrow \tan x=\pm 1$
$x=n \pi \pm \frac{\Pi}{4}, n \in z$, but $\cos x$ is positive so $x=2 n \pi \pm \frac{\Pi}{4}, n \in z$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.