Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\operatorname{cosec} \theta+\cot \theta=\mathrm{c}$, then what is $\cos \theta$ equal to $?
MathematicsTrigonometric Ratios & IdentitiesNDANDA 2013 (Phase 1)
Options:
  • A $\frac{\mathrm{c}}{\mathrm{c}^{2}-1}$
  • B $\frac{c}{c^{2}+1}$
  • C $\frac{\mathrm{c}^{2}-1}{\mathrm{c}^{2}+1}$
  • D None of the above
Solution:
1430 Upvotes Verified Answer
The correct answer is: $\frac{\mathrm{c}^{2}-1}{\mathrm{c}^{2}+1}$
Let $\operatorname{cosec} \theta+\cot \theta=\mathrm{c}$
$\Rightarrow \frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}=\mathrm{c} \Rightarrow \frac{1+\cos \theta}{\sin \theta}=\mathrm{c}$
$\Rightarrow \frac{1+\left(2 \cos ^{2} \frac{\theta}{2}-1\right)}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}=\mathrm{c} \Rightarrow \frac{2 \cos ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}=\mathrm{c}$
$\Rightarrow \cot \frac{\theta}{2}=\mathrm{c} \Rightarrow \cos \theta=\frac{1-\frac{1}{\mathrm{c}^{2}}}{1+\frac{1}{\mathrm{c}^{2}}}=\frac{\mathrm{c}^{2}-1}{\mathrm{c}^{2}+1}$
$\left(\because \cos \theta=\frac{1-\tan ^{2}\left(\frac{\theta}{2}\right)}{1+\tan ^{2}\left(\frac{\theta}{2}\right)}\right)$
$\Rightarrow \tan \frac{\theta}{2}=\frac{1}{\mathrm{c}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.