Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If ddxx·2x-x1-cosx=x·2x-x1-cosxfx+log2, then fx=
MathematicsDifferentiationTS EAMCETTS EAMCET 2021 (04 Aug Shift 2)
Options:
  • A 1x+log22x+tanx2
  • B 1x+log22x-1-sinx1-cosx
  • C x+2x-1+sinx1-cosx
  • D 1x+log22x-1+cotx2
Solution:
2218 Upvotes Verified Answer
The correct answer is: 1x+log22x-1-sinx1-cosx

Given, ddxx·2x-x1-cosx=x·2x-x1-cosxfx+log2

1-cosxddxx·2x-x-x·2x-xddx1-cosx1-cosx2=x·2x-x1-cosxfx+log2

1-cosxx·2xlog2+2x-1-x·2x-xsinx1-cosx2=x·2x-x1-cosxfx+log2

1-cosxx·2xlog2+2x-1-x·2x-xsinx1-cosx=x·2x-xfx+log2

1-cosxx.2xlog2+2x-1-x.2x-xsinx1-cosxx.2x-x-log2=fx

1-cosxx·2xlog2+2x-11-cosxx·2x-x-x·2x-xsinx1-cosxx·2x-x-log2=fx

x·2xlog2+2x-1x·2x-x-x·2x-xsinx1-cosxx·2x-x-log2=fx

x·2xlog2+2x-1-x·2x-xlog2x2x-1-sinx1-cosx=fx

x·2xlog2-1+2x-x·2xlog2+xlog2x2x-1-sinx1-cosx=fx

2x-1+xlog2x2x-1-sinx1-cosx=fx

fx=1x+log22x-1-sinx1-cosx

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.