Search any question & find its solution
Question:
Answered & Verified by Expert
If $\frac{d}{d x} G(x)=\frac{e^{\tan x}}{x}, x \in(0, \pi / 2)$, then $\int_{1 / 4}^{1 / 2} \frac{2}{x} \cdot e^{\tan \left(\pi x^2\right)} d x$ is equal to
Options:
Solution:
1622 Upvotes
Verified Answer
The correct answer is:
$G(\pi / 4)-G(\pi / 16)$
$G(\pi / 4)-G(\pi / 16)$
Let $\frac{d}{d x} G(x)=\frac{e^{\tan x}}{x}, x \in\left(0, \frac{\pi}{2}\right)$
Now,
$$
\begin{aligned}
I & =\int_{1 / 4}^{1 / 2} \frac{2}{x} e^{\tan \pi x^2} \cdot d x \\
& =\int_{1 / 4}^{1 / 2} \frac{2 \pi x}{\pi x^2} e^{\tan \pi x^2} \cdot d x
\end{aligned}
$$
Let $\pi x^2=t \Rightarrow 2 \pi x d x=d t$
When $x=\frac{1}{2}, t=\frac{\pi}{4}$ and $x=\frac{1}{4}, t=\frac{\pi}{16}$
$$
\begin{aligned}
\therefore I & =\int_{\pi / 16}^{\pi / 4} \frac{e^{\tan t}}{t} d t=g(t) \mid \begin{array}{l}
\frac{\pi}{4} \\
\frac{\pi}{16}
\end{array} \\
& =G\left(\frac{\pi}{4}\right)-G\left(\frac{\pi}{16}\right)
\end{aligned}
$$
Now,
$$
\begin{aligned}
I & =\int_{1 / 4}^{1 / 2} \frac{2}{x} e^{\tan \pi x^2} \cdot d x \\
& =\int_{1 / 4}^{1 / 2} \frac{2 \pi x}{\pi x^2} e^{\tan \pi x^2} \cdot d x
\end{aligned}
$$
Let $\pi x^2=t \Rightarrow 2 \pi x d x=d t$
When $x=\frac{1}{2}, t=\frac{\pi}{4}$ and $x=\frac{1}{4}, t=\frac{\pi}{16}$
$$
\begin{aligned}
\therefore I & =\int_{\pi / 16}^{\pi / 4} \frac{e^{\tan t}}{t} d t=g(t) \mid \begin{array}{l}
\frac{\pi}{4} \\
\frac{\pi}{16}
\end{array} \\
& =G\left(\frac{\pi}{4}\right)-G\left(\frac{\pi}{16}\right)
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.