Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\frac{\mathrm{d} y}{\mathrm{~d} x}=y+3$ and $y(0)=2$, then $y(\log 2)=$
MathematicsDifferential EquationsMHT CETMHT CET 2023 (12 May Shift 1)
Options:
  • A 5
  • B 7
  • C 13
  • D -2
Solution:
1960 Upvotes Verified Answer
The correct answer is: 7
$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=y+3 \\
& \Rightarrow \frac{\mathrm{d} y}{y+3}=\mathrm{d} x
\end{aligned}
$$
Integrating on both sides, we get
$$
\begin{array}{ll}
& \int \frac{\mathrm{d} y}{y+3}=\int \mathrm{d} x+\mathrm{c} \\
\Rightarrow & \log (y+3)=x+\mathrm{c} \\
& y=2 \text { when } x=0 \\
\therefore \quad & \log (2+3)=0+\mathrm{c} \Rightarrow \mathrm{c}=\log 5 \\
\therefore \quad & \log (y+3)=x+\log 5 \\
& \Rightarrow y+3=5 \mathrm{e}^x \\
\Rightarrow y=5 \mathrm{e}^x-3 & \\
\therefore \quad & y(\log 2)=5 \mathrm{e}^{\log 2}-3=10-3 \\
& =7
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.