Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If dydx+ytanx=sin2x and y0=1, then yπ is equal to
MathematicsDifferential EquationsJEE MainJEE Main 2014 (19 Apr Online)
Options:
  • A -1
  • B 5
  • C 1
  • D -5
Solution:
2801 Upvotes Verified Answer
The correct answer is: -5

The given differential equation dydx+ytanx=sin2x is linear differential equation of the form 

dydx+Pxy=Qx with P(x)=tanxQ(x)=sin2x

Now, I.F.=ePxdx=etanxdx=elnsecx=secx

And, the solution is yI.F.=QxI.F.dx+c

ysecx=secxsin2xdx+c

ysecx=1cosx2sinxcosxdx+c

ysecx=2sinxdx+c

ysecx=-2cosx+c

Given, y0=1

1·sec0=-2cos0+c

1=-2+c

c=3

ysecx=-2cosx+3

Now, at x=π

yπsecπ=-2cosπ+3

yπ-1=-2-1+3

yπ=-5.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.