Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $e_{1}$ and $e_{2}$ are the eccentricities of a hyperbola $3 x^{2}-3 y^{2}=25$ and its conjugate, then
MathematicsHyperbolaKCETKCET 2008
Options:
  • A $e_{1}^{2}+e_{2}^{2}=2$
  • B $\mathrm{e}_{1}^{2}+\mathrm{e}_{2}^{2}=4$
  • C $e_{1}+e_{2}=4$
  • D $e_{1}+e_{2}=\sqrt{2}$
Solution:
1804 Upvotes Verified Answer
The correct answer is: $\mathrm{e}_{1}^{2}+\mathrm{e}_{2}^{2}=4$
Given equation can be rewritten as
$$
x^{2}-y^{2}=\frac{25}{3}
$$
Here, $\quad \mathrm{a}^{2}=1, \mathrm{~b}^{2}=1$ $\therefore \quad \mathrm{e}_{1}=\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}=\sqrt{1+1}=\sqrt{2}$
The equation of conjugate hyperbola is
$$
\begin{gathered}
-\mathrm{x}^{2}+\mathrm{y}^{2}=\frac{25}{3} \\
\therefore \quad \mathrm{e}_{2}=\sqrt{1+\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}}=\sqrt{1+1}=\sqrt{2} \\
\therefore \quad \mathrm{e}_{1}^{2}+\mathrm{e}_{2}^{2}=(\sqrt{2})^{2}+(\sqrt{2})^{2}=4
\end{gathered}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.