Search any question & find its solution
Question:
Answered & Verified by Expert
If $\overline{\mathrm{e}}_1, \overline{\mathrm{e}}_2$ and $\overline{\mathrm{e}}_1+\overline{\mathrm{e}}_2$ are unit vectors, then the angle between $\overline{\mathrm{e}}_1$ and $\bar{e}_2$ is
Options:
Solution:
2363 Upvotes
Verified Answer
The correct answer is:
$120^{\circ}$
$\begin{aligned} & \left|\overline{\mathrm{e}}_1+\overline{\mathrm{e}}_2\right|^2=\left|\overline{\mathrm{e}}_1^2\right|+\left|\overline{\mathrm{e}}_2^2\right|+2 \overline{\mathrm{e}}_1 \overline{\mathrm{e}}_2 \cos \theta \\ & \text { Here }\left|\overline{\mathrm{e}}_1\right|=1,\left|\overline{\mathrm{e}}_2\right|=1 \text { and }\left|\overline{\mathrm{e}}_1+\overline{\mathrm{e}}_2\right|=1 \\ & \therefore(1)=(2)^2+(1)^2+2(1)(1) \cos \theta \\ & \therefore \frac{-1}{2}=\cos \theta \Rightarrow \theta=120^{\circ}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.