Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $e_1$ is the eccentricity of the ellipse $\frac{x^2}{16}+\frac{y^2}{25}=1$ and $e_2$ is the eccentricity of a hyperbola passing through the foci of the given ellipse and $e_1 e_2=1$, then the equation of such a hyperbola among the following is
MathematicsHyperbolaTS EAMCETTS EAMCET 2019 (03 May Shift 1)
Options:
  • A $\frac{x^2}{9}-\frac{y^2}{16}=1$
  • B $\frac{y^2}{9}-\frac{x^2}{16}=1$
  • C $\frac{x^2}{9}-\frac{y^2}{25}=1$
  • D $\frac{x^2}{25}-\frac{y^2}{9}=1$
Solution:
2234 Upvotes Verified Answer
The correct answer is: $\frac{y^2}{9}-\frac{x^2}{16}=1$
Equation of ellipse $\frac{x^2}{16}+\frac{y^2}{25}=1$
Foci $\quad=(0, \pm 3)$
$\Rightarrow \quad e_2=\sqrt{1-\frac{16}{25}}=\frac{3}{5}$ given $e_2 e_2=1$
(where $e_2$ is eccentricity of hyperbola)
Let equation of hyperbola $-\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$
its passes through $(0, \pm 3)$
$$
\begin{array}{ll}
\therefore & b^2=9 \\
\Rightarrow & e_2=\sqrt{1+\frac{a^2}{b^2}} \\
\Rightarrow & e_2^2=1+\frac{a^2}{b^2} \\
\Rightarrow & \frac{1}{e_2^2}=1+\frac{a^2}{9} \Rightarrow \frac{25}{9}=1+\frac{a^2}{9} \\
\Rightarrow & a^2=16
\end{array}
$$
Hence, the equation of hyperbola is $\frac{y^2}{9}-\frac{x^2}{16}=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.