Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\quad e^{f(x)}=\frac{10+x}{10-x}, x \in(-10,10) \quad$ and $f(x)=k f\left(\frac{200 x}{100+x^2}\right)$, then $k$ is equal to
MathematicsFunctionsTS EAMCETTS EAMCET 2003
Options:
  • A 0.5
  • B 0.6
  • C 0.7
  • D 0.8
Solution:
2445 Upvotes Verified Answer
The correct answer is: 0.5
We have,
$e^{f(x)}=\frac{10+x}{10-x}$
$f(x)=\log \frac{10+x}{10-x}$
Given that $f(x)=k f\left(\frac{200 x}{100+x^2}\right)$
$\Rightarrow \quad \log \frac{10+x}{10-x}=k \cdot \log \left\{\frac{10+\frac{200 x}{100+x^2}}{10-\frac{200 x}{100+x^2}}\right\}$
$=k \log \left\{\frac{1000+10 x^2+200 x}{1000+10 x^2-200 x}\right\}$
$=k \log \left\{\frac{x^2+100+20 x}{x^2+100-20 x}\right\}$
$=k \log \left\{\frac{(x+10)^2}{(10-x)^2}\right\}$
$=2 k \log \frac{10+x}{10-x}$
$\Rightarrow \quad \log \frac{10+x}{10-x}=2 k \log \frac{10+x}{10-x}$
$\therefore \quad 2 k=1 \Rightarrow k=\frac{1}{2}=0.5$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.