Search any question & find its solution
Question:
Answered & Verified by Expert
If 'E', 'M', 'L' and 'G' denote energy, mass, angular momentum and constant of gravitaion respectively then $\left(\frac{\mathrm{EL}^{2}}{\mathrm{G}^{2} \mathrm{M}^{5}}\right)$ has dimensions of
Options:
Solution:
1142 Upvotes
Verified Answer
The correct answer is:
angle
Correct option is
D angle.
$[\mathrm{E}]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right],[\mathrm{m}]$
$=[\mathrm{M}][\mathrm{I}]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right],[\mathrm{G}]=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$
$\therefore\left[\frac{\mathrm{El}^{2}}{\mathrm{~m}^{5} \mathrm{G}^{2}}\right]=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\left[\mathrm{M}^{2} \mathrm{~L}^{4} \mathrm{~T}^{-2}\right]}{\left[\mathrm{M}^{5}\right]\left[\mathrm{M}^{-2} \mathrm{~L}^{6} \mathrm{~T}^{-4}\right]}$
$=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
As angle has no dimensions, therefore $\frac{\mathrm{El}^{5}}{\mathrm{~m}^{5} \mathrm{G}^{2}}$ has the same dimensions as that of angle.
D angle.
$[\mathrm{E}]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right],[\mathrm{m}]$
$=[\mathrm{M}][\mathrm{I}]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right],[\mathrm{G}]=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$
$\therefore\left[\frac{\mathrm{El}^{2}}{\mathrm{~m}^{5} \mathrm{G}^{2}}\right]=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\left[\mathrm{M}^{2} \mathrm{~L}^{4} \mathrm{~T}^{-2}\right]}{\left[\mathrm{M}^{5}\right]\left[\mathrm{M}^{-2} \mathrm{~L}^{6} \mathrm{~T}^{-4}\right]}$
$=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
As angle has no dimensions, therefore $\frac{\mathrm{El}^{5}}{\mathrm{~m}^{5} \mathrm{G}^{2}}$ has the same dimensions as that of angle.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.