Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathrm{E}_{\mathrm{O}}$ and $\mathrm{B}_{\mathrm{o}}$ are the magnitudes of the electric and magnetic fields respectively of an electromagnetic wave in vacuum, then among the following the correct relation is
( $\mu_0-$ permeability of free space, $\varepsilon_0-$ permittivity of free space)
Options:
( $\mu_0-$ permeability of free space, $\varepsilon_0-$ permittivity of free space)
Solution:
2614 Upvotes
Verified Answer
The correct answer is:
$\mathrm{E}_{\mathrm{o}} \sqrt{\varepsilon_{\mathrm{o}}}=\frac{\mathrm{B}_{\mathrm{o}}}{\sqrt{\mu_{\mathrm{o}}}}$
Speed of light is given as:
$\begin{gathered}E_o=c B_o \\ c=\frac{E_o}{B_o}\end{gathered}$
According to maxwell speed of light is given as
$\begin{aligned} & c=\frac{1}{\sqrt{\mu_0 \epsilon_0}} \\ & \therefore \frac{E_o}{B_o}=\frac{1}{\sqrt{\mu_o \epsilon_0}} \\ & E_o \sqrt{\epsilon_0}=\frac{B_o}{\sqrt{\mu_o}}\end{aligned}$
$\begin{gathered}E_o=c B_o \\ c=\frac{E_o}{B_o}\end{gathered}$
According to maxwell speed of light is given as
$\begin{aligned} & c=\frac{1}{\sqrt{\mu_0 \epsilon_0}} \\ & \therefore \frac{E_o}{B_o}=\frac{1}{\sqrt{\mu_o \epsilon_0}} \\ & E_o \sqrt{\epsilon_0}=\frac{B_o}{\sqrt{\mu_o}}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.