Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\int e^x(1+x) \cdot \sec ^2\left(x e^x\right) d x$ $=f(x)+$ constant, then $f(x)$ is equal to
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2008
Options:
  • A $\cos \left(x e^x\right.$
  • B $\sin \left(x e^x\right.$
  • C $2 \tan ^{-1}(x)$
  • D $\tan \left(x e^x\right)$
Solution:
1972 Upvotes Verified Answer
The correct answer is: $\tan \left(x e^x\right)$
Given that,
$$
\int e^x(1+x) \cdot \sec ^2\left(x e^x\right) d x=f(x)+\text { constant }
$$
Put
$$
x e^x=t \text { in LHS }
$$
$$
\begin{aligned}
& \Rightarrow & \left(e^x+x e^x\right) d x & =d t \\
& \therefore & \text { LHS } & =\int \sec ^2 t d t \\
& & & =\tan t+\text { constant } \\
& \Rightarrow & \tan \left(x e^x\right)+\text { constant } & =f(x)+\text { constant } \\
& \Rightarrow & f(x) & =\tan \left(x e^x\right)
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.