Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $e^x+e^y=e^{x+y}$, then $\frac{d y}{d x}=$
MathematicsDifferentiationMHT CETMHT CET 2022 (07 Aug Shift 2)
Options:
  • A $-e^{y-x}$
  • B $e^{x-y}$
  • C $-e^{x-y}$
  • D $e^{y-x}$
Solution:
2634 Upvotes Verified Answer
The correct answer is: $-e^{y-x}$
$e^x+e^y=e^{x+y} \Rightarrow e^x+e^y \cdot \frac{d y}{d x}=e^{x+y}\left(1+\frac{d y}{d x}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{e^x-e^{x+y}}{e^{x+y}-e^y}=\frac{e^x-e^x-e^y}{e^x+e^y-e^y}=-\frac{e^y}{e^x}=-e^{y-x}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.