Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If each of the points $(a, 4),(-2, b)$ lies on the line joining the points $(2,-1)$ and $(5,-3)$ then the point $(a, b)$ lies on the line
MathematicsStraight LinesTS EAMCETTS EAMCET 2023 (12 May Shift 1)
Options:
  • A $6 x+6 y-25=0$
  • B $x+3 y+1=0$
  • C $2 x+6 y+1=0$
  • D $2 x+3 y-5=0$
Solution:
2501 Upvotes Verified Answer
The correct answer is: $2 x+6 y+1=0$
Equation of line joining $(2,-1)$ and $(5,-3)$
$\begin{aligned}
& y+1=\frac{-3+1}{5-2}(x-2) \\
\Rightarrow \quad & 3(y+1)=-2(x-2) \\
\Rightarrow \quad & 3 y+3=-2 x+4 \\
L: & 2 x+3 y=1 \\
\because \quad & (a, 4) \text { lies on } L, \\
& 2 a+12=1 \Rightarrow 2 a=-11 \\
\therefore \quad & a=\frac{-11}{2}
\end{aligned}$
$(-2, b)$ lies on $L$ :
$-4+3 b=1 \Rightarrow 3 b=5 \Rightarrow b=\frac{5}{3}$
$\therefore \quad(a, b)$ i.e. $\left(\frac{-11}{2}, \frac{5}{3}\right)$ lies on line $2 x+6 y+1=0$.
$\begin{aligned}
& y+1=\frac{-3+1}{5-2}(x-2) \\
\Rightarrow \quad & 3(y+1)=-2(x-2) \\
\Rightarrow \quad & 3 y+3=-2 x+4 \\
L: & 2 x+3 y=1 \\
\because \quad & (a, 4) \text { lies on } L, \\
& 2 a+12=1 \Rightarrow 2 a=-11 \\
\therefore \quad & a=\frac{-11}{2}
\end{aligned}$
$(-2, b)$ lies on $L$ :
$-4+3 b=1 \Rightarrow 3 b=5 \Rightarrow b=\frac{5}{3}$
$\therefore \quad(a, b)$ i.e. $\left(\frac{-11}{2}, \frac{5}{3}\right)$ lies on line $2 x+6 y+1=0$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.