Search any question & find its solution
Question:
Answered & Verified by Expert
If $f:[-3,2] \rightarrow[0, \sqrt[3]{x}]$ is an onto function defined by $f(n)=\left\{\begin{array}{cc}2+\sqrt[3]{n}, & -3 \leq n \leq-1 \\ n^{2 / 3}, & -1 \leq n \leq 2\end{array}\right.$, then $x=$
Options:
Solution:
1590 Upvotes
Verified Answer
The correct answer is:
4
Given function $f:[-3,2] \rightarrow[0, \sqrt[3]{x}]$, such that
$f(n)=\left\{\begin{array}{cc}2+\sqrt[3]{n}, & -3 \leq n \leq-1 \\ n^{2 / 3}, & -1 \leq n \leq 2\end{array}\right.$
So, $f^{\prime}(n)= \begin{cases}\frac{1}{3} n^{-2 / 3} & -3 < n < -1 \\ \frac{2}{3} n^{-1 / 3}, & -1 < n < 2\end{cases}$
$\because f(n)$ is strictly increasing in $(-3,-1)$ and $(0,2)$ because $f^{\prime}(n)$ is positive, for $n \in(-3,-1) \cup(0,2)$ and $f$ is strictly decreasing in $(-1,0)$.
$\because f(-1)$ or $f(2)$ is the maximum value of the function and $f(-1)=1$ and $f(2)=2^{2 / 3}$
$\therefore \quad \sqrt[3]{x}=2^{2 / 3} \Rightarrow x=4$
$f(n)=\left\{\begin{array}{cc}2+\sqrt[3]{n}, & -3 \leq n \leq-1 \\ n^{2 / 3}, & -1 \leq n \leq 2\end{array}\right.$
So, $f^{\prime}(n)= \begin{cases}\frac{1}{3} n^{-2 / 3} & -3 < n < -1 \\ \frac{2}{3} n^{-1 / 3}, & -1 < n < 2\end{cases}$
$\because f(n)$ is strictly increasing in $(-3,-1)$ and $(0,2)$ because $f^{\prime}(n)$ is positive, for $n \in(-3,-1) \cup(0,2)$ and $f$ is strictly decreasing in $(-1,0)$.
$\because f(-1)$ or $f(2)$ is the maximum value of the function and $f(-1)=1$ and $f(2)=2^{2 / 3}$
$\therefore \quad \sqrt[3]{x}=2^{2 / 3} \Rightarrow x=4$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.