Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f:[-3,4] \rightarrow R, f(x)=2 x$, and $g:[-2,6] \rightarrow R, g(x)=x^2$. Then find function $(f+g)(x)$.
MathematicsFunctionsJEE Main
Options:
  • A $(f+g)(x)=3 x^2+2 \mathrm{x}$
  • B $(f+g)(x)=2 x+x^2$
  • C $(f+g)(x)=10 x^2-9$
  • D none of these
Solution:
1504 Upvotes Verified Answer
The correct answer is: $(f+g)(x)=2 x+x^2$
$f \longrightarrow:[-3,4] \rightarrow R, f(x)=2 x$, and $g:[-2,6] \rightarrow R, g(x)=x^2$
For $(f+g)(x)$ we consider common domain of $f(x)$ and $g(x)$.
Now $[-3,4] \cap[-2,6] \equiv[-2,4]$
So, $(f+g):[-2,4] \rightarrow R,(f+g)(x)=2 x+x^2$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.