Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f$ is continuous function and $f(x+T)=f(x), \forall x \in R$, it is given that $\int_0^{N T} f(t) d t=N \int_0^T f(t) d t \cdot(N$ is natural number). Then, $\int_0^{50 \pi} \sqrt{1-\cos 2 x} d x=$
MathematicsDefinite IntegrationAP EAMCETAP EAMCET 2022 (06 Jul Shift 2)
Options:
  • A $50 \sqrt{2}$
  • B $100 \sqrt{2}$
  • C $\frac{50}{\sqrt{2}}$
  • D $\frac{100}{\sqrt{2}}$
Solution:
1595 Upvotes Verified Answer
The correct answer is: $100 \sqrt{2}$
Let $\begin{aligned} I= & \int_0^{50 \pi} \sqrt{1-\cos 2 x} d x \\ = & 50 \int_0^\pi \sqrt{1-\cos 2 x} d x \\ & {[\because \sqrt{1-\cos 2(2 \pi+x)}=\sqrt{1-\cos 2 x}] } \\ I= & 50 \int_0^\pi \sqrt{2} \sin x d x \\ & =50 \sqrt{2}[-\cos x]_0^\pi \\ & =-50 \sqrt{2}[(-1)-1]=100 \sqrt{2}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.