Search any question & find its solution
Question:
Answered & Verified by Expert
If $f$ is defined on $\mathbb{R}$ such that $f(\mathrm{x}) f(-\mathrm{x})=9$, then $\int_{-23}^{23} \frac{d x}{3+f(x)}$
Options:
Solution:
2181 Upvotes
Verified Answer
The correct answer is:
$\frac {46}{6}$
$\begin{aligned} & f(x) \cdot f(-x)=9 \\ & I=\int_{-23}^{23} \frac{d x}{3+f(x)}... (i) \\ & I=\int_{-23}^{23} \frac{d x}{3+f(-x)} \quad(f(a+b-x) \text { property }) \\ & I=\int_{-23}^{23} \frac{d x}{3+\frac{9}{f(x)}}=\int_{-23}^{23} \frac{f(x) d x}{3(f(x)+3)}... (ii) \\ & \text { (i) }+ \text { (ii), } \\ & 2 I=\int_{-23}^{23}\left(\frac{d x}{3+f(x)}+\frac{f(x) d x}{3(3+f(x))}\right) \\ & =\int_{-23}^{23} \frac{(3+f(x)) d x}{3(3+f(x))} \\ & 2 I=\frac{1}{3} \int_{-23}^{23} 1 d x \Rightarrow I=\frac{1}{6}[x]_{-23}^{23}=\frac{46}{6} \\ & \end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.