Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f_n(x)=\log \log \log \ldots \log x \quad(\log$ is repeated $n$-times), then
$\int\left(x f_1(x) f_2(x) \ldots f_n(x)\right)^{-1} d x$ is equal to
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2010
Options:
  • A $f_{n+1}(x)+c$
  • B $\frac{f_{n+1}(x)}{n+1}+c$
  • C $n f_n(x)+c$
  • D $\frac{f_n(x)}{n}+c$
Solution:
2014 Upvotes Verified Answer
The correct answer is: $f_{n+1}(x)+c$
$f_n(x)=\log \cdot \log \cdot \log \ldots \cdot \log x$ (upto $n$ times)
$f_1(x)=\log x$
$f_2(x)=\log \log x$
$f_3(x)=\log \log \log x$
$f_{n-1}(x)=\log \log \log \ldots \ldots \log x$
(up to $(n-1)$ times)
Now, $\int\left(x f_1(x) f_2(x) \ldots f_n(x)\right)^{-1} d x$
$=\int \frac{d x}{\left[x f_1(x) f_2(x) \ldots f_n(x)\right]}$
$=\int \frac{\left[x f_1(x) f_2(x) \ldots f_{n-1}(x)\right] d t}{\left[x f_1(x) f_2(x) \ldots f_{n-1}(x)\right] \cdot t}=\int \frac{d t}{t}$
$=\log t+c$
$\left[\begin{array}{l}\text { Put, } f_n(x)=t \\ \frac{d t}{d x}=\frac{1}{\left[f_{n-1}(x) f_{n-2}(x) \ldots f_1(x) \cdot x\right]} \\ d x=\left[x f_1(x) \cdot f_2(x) \ldots f_{n-1}(x)\right] d t\end{array}\right]$
$=\log f_n(x)+c$
$=f_{n+1}(x)+c$
Hence,
$\int\left(x f_1(x) f_2(x) \ldots f_n(x)\right)^{-1} d x=f_{n+1}(x)+c$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.