Search any question & find its solution
Question:
Answered & Verified by Expert
If $f: R \rightarrow R$ is defined as $f(x+y)=f(x)+f(y)$, $\forall x, y \in R$ and $f(\mathrm{l})=5$, then find the value of the following $\sum_{r=1}^n f(r)$ is equal to
Options:
Solution:
1600 Upvotes
Verified Answer
The correct answer is:
$\frac{5 n(n+1)}{2}$
$$
\text { Given } f: R \rightarrow R \text { is defined as }
$$
$$
f(x+y)=f(x)+f(y), \forall x, y \in R \text { and } f(1)=5
$$
To Find $\sum_{r=1}^n f(r)=$ ?
Since, $f(x+y)=f(x)+f(y)$
Let $x=y=1$
$$
\begin{aligned}
f(1+1) & =f(\mathrm{l})+f(\mathrm{l})=5+5 \\
f(2) & =10
\end{aligned}
$$
Again in Eq. (i), put $x=2, y=1$
$$
\begin{aligned}
f(2+1) & =f(2)+f(1) \\
f(3) & =10+5 \\
f(3) & =15
\end{aligned}
$$
Similarly, we can find $f(4)=15+5=20$
$$
\begin{aligned}
f(5) & =25, \ldots f(n)=5 n \\
\sum_{r=1}^n f(r) & =f(1)+f(2)+\ldots+f(n) \\
& =5+10+15+\ldots+5 n
\end{aligned}
$$
which forms an AP of $n$-terms with first term (a) $=5$ and common difference $(d)=5$
$$
\begin{aligned}
& =\frac{n}{2}[2(5)+(n-1) 5] \\
& =\frac{n}{2}[10+5 n-5]=\frac{n}{2}[5 n+5] \\
\sum_{r=1}^n f(r) & =\frac{5 n(n+1)}{2}
\end{aligned}
$$
\text { Given } f: R \rightarrow R \text { is defined as }
$$
$$
f(x+y)=f(x)+f(y), \forall x, y \in R \text { and } f(1)=5
$$
To Find $\sum_{r=1}^n f(r)=$ ?
Since, $f(x+y)=f(x)+f(y)$
Let $x=y=1$
$$
\begin{aligned}
f(1+1) & =f(\mathrm{l})+f(\mathrm{l})=5+5 \\
f(2) & =10
\end{aligned}
$$
Again in Eq. (i), put $x=2, y=1$
$$
\begin{aligned}
f(2+1) & =f(2)+f(1) \\
f(3) & =10+5 \\
f(3) & =15
\end{aligned}
$$
Similarly, we can find $f(4)=15+5=20$
$$
\begin{aligned}
f(5) & =25, \ldots f(n)=5 n \\
\sum_{r=1}^n f(r) & =f(1)+f(2)+\ldots+f(n) \\
& =5+10+15+\ldots+5 n
\end{aligned}
$$
which forms an AP of $n$-terms with first term (a) $=5$ and common difference $(d)=5$
$$
\begin{aligned}
& =\frac{n}{2}[2(5)+(n-1) 5] \\
& =\frac{n}{2}[10+5 n-5]=\frac{n}{2}[5 n+5] \\
\sum_{r=1}^n f(r) & =\frac{5 n(n+1)}{2}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.