Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{f}(x)=\left(\frac{2^{x}-1}{1-3^{x}}\right)$, for $\mathrm{x} \neq 0$ is continuous at $x=0$, then $\mathrm{f}(0)=$
MathematicsLimitsMHT CETMHT CET 2020 (20 Oct Shift 1)
Options:
  • A $\cdot \log 3$
  • B $\frac{-(\log 2)}{(\log 3)}$
  • C $\frac{(\log 2)}{(\log 3)}$
  • D $-\log 2$
Solution:
2786 Upvotes Verified Answer
The correct answer is: $\frac{-(\log 2)}{(\log 3)}$
$f(0)=\lim _{x \rightarrow 0} \frac{2^{x}-1}{-\left(3^{x}-1\right)}=-\frac{\lim _{x \rightarrow 0} \frac{2^{x}-1}{x}}{\lim _{x \rightarrow 0} \frac{3^{x}-1}{x}}=\frac{-\log 2}{\log 3}$

$$
f(0)=\lim _{x \rightarrow 0} \frac{2^{x}-1}{-\left(3^{x}-1\right)}=-\frac{\lim _{x \rightarrow 0} \frac{2^{x}-1}{x}}{\lim _{x \rightarrow 0} \frac{3^{x}-1}{x}}=\frac{-\log 2}{\log 3}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.