Search any question & find its solution
Question:
Answered & Verified by Expert
If $f(x)=1+n x+\frac{n(n-1)}{2} x^2+\frac{n(n-1)(n-2)}{6}$ $x^3+\ldots+x^n$, then $f^n(1)$ is equal to
Options:
Solution:
2762 Upvotes
Verified Answer
The correct answer is:
$n(n-1) 2^{n-2}$
Given,
$\begin{aligned} f(x)=1+n x+\frac{n(n-1)}{2} x^2+\frac{n(n-1)(n-2)}{6} x^3 & \\ & +\ldots+x^n .\end{aligned}$
The given equation can be written as $f(x)=(1+x)^n$
$\because(1+x)^n=1+n x+\frac{n(n-1)}{2 !}$
$x^2+\frac{n(n-1)(n-2)}{3 !} x^3+\ldots x^n$
Now, $f^{\prime}(x)=n(1+x)^{n-1}$
and, $f^{\prime \prime}(x)=n(n-1)(1+x)^{n-2}$
put $x=1$
$\therefore f^{\prime \prime}(1)=n(n-1) 2^{n-2}$
$\begin{aligned} f(x)=1+n x+\frac{n(n-1)}{2} x^2+\frac{n(n-1)(n-2)}{6} x^3 & \\ & +\ldots+x^n .\end{aligned}$
The given equation can be written as $f(x)=(1+x)^n$
$\because(1+x)^n=1+n x+\frac{n(n-1)}{2 !}$
$x^2+\frac{n(n-1)(n-2)}{3 !} x^3+\ldots x^n$
Now, $f^{\prime}(x)=n(1+x)^{n-1}$
and, $f^{\prime \prime}(x)=n(n-1)(1+x)^{n-2}$
put $x=1$
$\therefore f^{\prime \prime}(1)=n(n-1) 2^{n-2}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.