Search any question & find its solution
Question:
Answered & Verified by Expert
If $f(x)=\left|\begin{array}{ccc}1+\sin x+\sin 2 x+\sin 3 x & \frac{3+\sin 2 x}{2} & \frac{-2+\sin 3 x}{3} \\3+4 \sin x & \frac{3}{2} & \frac{4}{3} \sin x \\1+\sin x & \frac{1}{2} \sin x & \frac{1}{3}\end{array}\right|$
then $\int_0^{\pi / 2}\left(f(x)+f^{\prime}(x)\right) d x=$
Options:
then $\int_0^{\pi / 2}\left(f(x)+f^{\prime}(x)\right) d x=$
Solution:
2179 Upvotes
Verified Answer
The correct answer is:
$\frac{-1}{9}$
Given that,
$f(x)=\left|\begin{array}{ccc}1+\sin x+\sin 2 x+\sin 3 x & \frac{3+\sin 2 x}{2} & \frac{-2+\sin 3 x}{3} \\ 3+4 \sin x & \frac{3}{2} & \frac{4}{3} \sin x \\ 1+\sin x & \frac{1}{2} \sin x & \frac{1}{3}\end{array}\right|$
$C_1 \rightarrow C_1-2 C_2-3 C_3$
$f(x)=\left|\begin{array}{ccc}\sin x & \frac{3+\sin 2 x}{2} & \frac{-2+\sin 3 x}{3} \\ 0 & \frac{3}{2} & \frac{4}{3} \sin x \\ 0 & \frac{1}{2} \sin x & \frac{1}{3}\end{array}\right|$
On expanding, we get
$f(x)=\sin x\left|\begin{array}{cc}\frac{3}{2} & \frac{4}{3} \sin x \\ \frac{1}{2} \sin x & \frac{1}{3}\end{array}\right|+0+0$
$=\sin x\left(\frac{3}{2} \times \frac{1}{3}-\frac{4}{3} \sin x \times \frac{1}{2} \sin x\right)$
$=\sin x\left(\frac{1}{2}-\frac{2}{3} \sin ^2 x\right)$
$f(x)=\frac{1}{6}\left(3 \sin x-4 \sin ^3 x\right)$
$f(x)=\frac{\sin 3 x}{6} \quad\left[\because \sin 3 x=3 \sin x-4 \sin ^3 x\right]$
Differentiating on both sides w.r.t. ' $x$ ', we get
$f^{\prime}(x)=\frac{d}{d x}\left(\frac{\sin 3 x}{6}\right)=\frac{1}{6} \cdot \cos 3 x \cdot 3$
$f^{\prime}(x)=\frac{\cos 3 x}{2}$
Let $\quad I=\int_0^{\pi / 2}\left(f(x)+f^{\prime}(x)\right) d x$
$I=\int_0^{\pi / 2}\left(\frac{\sin 3 x}{6}+\frac{\cos 3 x}{2}\right) d x$ $\ldots$ (i)
or $\quad I=\int_0^{\pi / 2}\left(\frac{\sin 3\left(\frac{\pi}{2}-x\right)}{6}+\frac{\cos 3\left(\frac{\pi}{2}-x\right)}{2}\right) d x$
$=\int_0^{\pi / 2}\left(\frac{\sin \left(\frac{3 \pi}{2}-3 x\right)}{6}+\frac{\cos \left(\frac{3 \pi}{2}-3 x\right)}{2}\right) d x$
$I=\int_0^{\pi / 2}\left(-\frac{\cos 3 x}{6}-\frac{\sin 3 x}{2}\right) d x$ $\ldots$ (ii)
Adding Eqs. (i) and (ii), we get
$2 I=\int_0^{\pi / 2}\left(\frac{\cos 3 x}{2}-\frac{\cos 3 x}{6}+\frac{\sin 3 x}{6}-\frac{\sin 3 x}{2}\right) d x$
$2 I=\frac{1}{3} \int_0^{\pi / 2}(\cos 3 x-\sin 3 x) d x$
or $2 I=\frac{1}{3}\left[\frac{\sin 3 x}{3}+\frac{\cos 3 x}{3}\right]_0^{\pi / 2}$
$=\frac{1}{9}\left[\sin 3 \times \frac{\pi}{2}+\cos 3 \times \frac{\pi}{2}-\sin 3 \times 0-\cos 3 \times 0\right]$
$=\frac{1}{9}[-1+0-0-1]=-\frac{2}{9}$ or $I=-\frac{1}{9}$
$f(x)=\left|\begin{array}{ccc}1+\sin x+\sin 2 x+\sin 3 x & \frac{3+\sin 2 x}{2} & \frac{-2+\sin 3 x}{3} \\ 3+4 \sin x & \frac{3}{2} & \frac{4}{3} \sin x \\ 1+\sin x & \frac{1}{2} \sin x & \frac{1}{3}\end{array}\right|$
$C_1 \rightarrow C_1-2 C_2-3 C_3$
$f(x)=\left|\begin{array}{ccc}\sin x & \frac{3+\sin 2 x}{2} & \frac{-2+\sin 3 x}{3} \\ 0 & \frac{3}{2} & \frac{4}{3} \sin x \\ 0 & \frac{1}{2} \sin x & \frac{1}{3}\end{array}\right|$
On expanding, we get
$f(x)=\sin x\left|\begin{array}{cc}\frac{3}{2} & \frac{4}{3} \sin x \\ \frac{1}{2} \sin x & \frac{1}{3}\end{array}\right|+0+0$
$=\sin x\left(\frac{3}{2} \times \frac{1}{3}-\frac{4}{3} \sin x \times \frac{1}{2} \sin x\right)$
$=\sin x\left(\frac{1}{2}-\frac{2}{3} \sin ^2 x\right)$
$f(x)=\frac{1}{6}\left(3 \sin x-4 \sin ^3 x\right)$
$f(x)=\frac{\sin 3 x}{6} \quad\left[\because \sin 3 x=3 \sin x-4 \sin ^3 x\right]$
Differentiating on both sides w.r.t. ' $x$ ', we get
$f^{\prime}(x)=\frac{d}{d x}\left(\frac{\sin 3 x}{6}\right)=\frac{1}{6} \cdot \cos 3 x \cdot 3$
$f^{\prime}(x)=\frac{\cos 3 x}{2}$
Let $\quad I=\int_0^{\pi / 2}\left(f(x)+f^{\prime}(x)\right) d x$
$I=\int_0^{\pi / 2}\left(\frac{\sin 3 x}{6}+\frac{\cos 3 x}{2}\right) d x$ $\ldots$ (i)
or $\quad I=\int_0^{\pi / 2}\left(\frac{\sin 3\left(\frac{\pi}{2}-x\right)}{6}+\frac{\cos 3\left(\frac{\pi}{2}-x\right)}{2}\right) d x$
$=\int_0^{\pi / 2}\left(\frac{\sin \left(\frac{3 \pi}{2}-3 x\right)}{6}+\frac{\cos \left(\frac{3 \pi}{2}-3 x\right)}{2}\right) d x$
$I=\int_0^{\pi / 2}\left(-\frac{\cos 3 x}{6}-\frac{\sin 3 x}{2}\right) d x$ $\ldots$ (ii)
Adding Eqs. (i) and (ii), we get
$2 I=\int_0^{\pi / 2}\left(\frac{\cos 3 x}{2}-\frac{\cos 3 x}{6}+\frac{\sin 3 x}{6}-\frac{\sin 3 x}{2}\right) d x$
$2 I=\frac{1}{3} \int_0^{\pi / 2}(\cos 3 x-\sin 3 x) d x$
or $2 I=\frac{1}{3}\left[\frac{\sin 3 x}{3}+\frac{\cos 3 x}{3}\right]_0^{\pi / 2}$
$=\frac{1}{9}\left[\sin 3 \times \frac{\pi}{2}+\cos 3 \times \frac{\pi}{2}-\sin 3 \times 0-\cos 3 \times 0\right]$
$=\frac{1}{9}[-1+0-0-1]=-\frac{2}{9}$ or $I=-\frac{1}{9}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.