Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\left\{\begin{array}{cl}2 \sin x & ;-\pi \leq x \leq \frac{-\pi}{2} \\ a \sin x+b & ;-\frac{\pi}{2} < x < \frac{\pi}{2} \quad \text { and it is } \\ \cos x & ; \frac{\pi}{2} \leq x \leq \pi\end{array}\right.$ continuous on $[-\pi, \pi]$, then
MathematicsContinuity and DifferentiabilityCOMEDKCOMEDK 2023
Options:
  • A $a=1$ and $b=1$
  • B $a=-1$ and $b=-1$
  • C $a=-1$ and $b=1$
  • D $a=1$ and $b=-1$
Solution:
2623 Upvotes Verified Answer
The correct answer is: $a=1$ and $b=-1$
$\begin{aligned}
& \text { At, } x=\frac{\pi}{2} \\
& \text { LHL }=\lim _{x \rightarrow \pi / 2^{-}}(a \sin x+b)=a+b \\
& \text { RHL }=\lim _{x \rightarrow \pi / 2^{+}}(\cos x)=0
\end{aligned}$
Since, $f(x)$ is continuous at $x=\pi / 2$


$\begin{aligned}
& \text { At, } x=-\frac{\pi}{2} \\
& \text { LHL }=\lim _{x \rightarrow-\pi / 2^{-}}(2 \sin x)=-2 \\
& \text { RHL }=\lim _{x \rightarrow-\pi / 2^{+}}(a \sin x+b)=-a+b
\end{aligned}$
Since, $f(x)$ is continuous at $x=-\pi / 2$

On solving Eqs. (i) and (ii), we get $a=1$ and $h=-1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.