Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If fx=2-xcosx2+xcosx and g(x)=logex, then the value of the integral -π4π4gfxdx is
MathematicsDefinite IntegrationJEE MainJEE Main 2019 (08 Apr Shift 1)
Options:
  • A logee
  • B loge2
  • C loge1
  • D loge3
Solution:
2990 Upvotes Verified Answer
The correct answer is: loge1

Given,

fx=2-xcosx2+xcosx, g(x)=logex

gfx=loge2-xcosx2+xcosx

gf-x=loge2-(-x)cos(-x)2+(-x)cos(-x)

gf-x=loge2+xcosx2-xcosx

gf-x=-log2-xcosx2+xcosx

gf-x=g(fx)

Hence, g(fx) is an odd function.

By using the property of definite integration, -aafxdx=20afxdx,  f-x=fx0,f-x=-fx, we can write
-π4π4g(f(x))dx=0=loge1

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.