Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{f}(x)= \begin{cases}3\left(1-2 x^2\right) & ; 0 < x < 1 \\ 0 & ; \text { otherwise }\end{cases}$ is a probability density function of $\mathrm{X}$, then $\mathrm{P}\left(\frac{1}{4} < x < \frac{1}{3}\right)$ is
MathematicsProbabilityMHT CETMHT CET 2023 (14 May Shift 1)
Options:
  • A $\frac{75}{243}$
  • B $\frac{23}{96}$
  • C $\frac{179}{864}$
  • D $\frac{52}{243}$
Solution:
2031 Upvotes Verified Answer
The correct answer is: $\frac{179}{864}$
$\begin{aligned} \mathrm{P}\left(\frac{1}{4} < x < \frac{1}{3}\right)= & \int_{\frac{1}{4}}^{\frac{1}{3}} \mathrm{f}(x) \mathrm{d} x=\int_{\frac{1}{4}}^{\frac{1}{3}} 3\left(1-2 x^2\right) \mathrm{d} x \\ & =\left[3 x-2 x^3\right]_{\frac{1}{4}}^{\frac{1}{3}} \\ & =\left(1-\frac{2}{27}\right)-\left(\frac{3}{4}-\frac{1}{32}\right) \\ & =\frac{1}{4}+\frac{1}{32}-\frac{2}{27} \\ & =\frac{179}{864}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.