Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\frac{2}{3} x+\frac{3}{2}, x \in R, \quad$ [2010-II]
then what is $f^{-1}(x)$ equal to?
MathematicsFunctionsNDANDA 2010 (Phase 2)
Options:
  • A $\frac{3}{2} x+\frac{2}{3}$
  • B $\frac{3}{2} x-\frac{9}{4}$
  • C $\frac{2}{3} x-\frac{4}{9}$
  • D $\frac{2}{3} x-\frac{2}{3}$
Solution:
1375 Upvotes Verified Answer
The correct answer is: $\frac{3}{2} x-\frac{9}{4}$
Let $f(x)=\frac{2}{3} x+\frac{3}{2}=y($ say $)=\frac{4 x+9}{6}=y$
$\Rightarrow \quad 4 x+9=6 y$
$\Rightarrow \quad x=\frac{6 y-9}{4}$
$\quad x=f^{-1}(y)$
$\Rightarrow \quad f^{-1}(x)=\frac{6 x-9}{4}=\frac{3 x}{2}-\frac{9}{4}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.