Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{f}(x)=3^x ; \mathrm{g}(x)=4^x$, then $\frac{\mathrm{f}^{\prime}(0)-\mathrm{g}^{\prime}(0)}{1+\mathrm{f}^{\prime}(0) \mathrm{g}^{\prime}(0)}$ is
MathematicsDifferentiationMHT CETMHT CET 2023 (11 May Shift 2)
Options:
  • A $\frac{\log \left(\frac{3}{4}\right)}{1+(\log 3)(\log 4)}$
  • B $\frac{\log \left(\frac{3}{4}\right)}{1+\log 12}$
  • C $\frac{\log 12}{1+\log 12}$
  • D $\frac{\log \left(\frac{3}{4}\right)}{1-\log 12}$
Solution:
2673 Upvotes Verified Answer
The correct answer is: $\frac{\log \left(\frac{3}{4}\right)}{1+(\log 3)(\log 4)}$
$\begin{aligned} \mathrm{f}^{\prime}(x)=3^x \log 3 & \Rightarrow \mathrm{f}^{\prime}(0)=\log 3 \\ \mathrm{~g}^{\prime}(x)=4^x \log 4 & \Rightarrow \mathrm{g}^{\prime}(0)=\log 4 \\ \therefore \quad \frac{\mathrm{f}^{\prime}(0)-\mathrm{g}^{\prime}(0)}{1+\mathrm{f}^{\prime}(0) \mathrm{g}^{\prime}(0)} & =\frac{\log 3-\log 4}{1+(\log 3)(\log 4)} \\ & =\frac{\log \left(\frac{3}{4}\right)}{1+(\log 3)(\log 4)}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.