Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\left\{\begin{array}{ll}\frac{e^{x}-1}{4 x} & \text { for } x \neq 0 \\ \frac{k+x}{4} & \text { for } x=0\end{array}\right.$ is continuous at $x=0$, then $k=$
MathematicsLimitsCOMEDKCOMEDK 2012
Options:
  • A 5
  • B 3
  • C 2
  • D 0
Solution:
1272 Upvotes Verified Answer
The correct answer is: 3
$\because f(x)$ is continuous at $x=0$
$$
\begin{aligned}
&\text { So, } \lim _{x \rightarrow 0} f(x)=f(0) \\
&\Rightarrow \quad \lim _{x \rightarrow 0} \frac{e^{3 x-1}}{4 x}=\frac{k+0}{4} \\
&\Rightarrow \quad \frac{1}{4} \lim _{x \rightarrow 0} 3\left(\frac{e^{3 x}-1}{3 x}\right)=\frac{\bar{k}}{4} \\
&\Rightarrow \quad 3 \lim _{x \rightarrow 0} \frac{e^{3 x}-1}{3 x}=k \Rightarrow 3 \times 1=k \Rightarrow k=3
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.