Search any question & find its solution
Question:
Answered & Verified by Expert
If $f(x)=\frac{3 x+4}{5 x-7}, x \neq \frac{7}{5}$
$g(x)=\frac{7 x+4}{5 x-3}, x \neq \frac{3}{5}$ then
$(g \circ f)(3)=$
Options:
$g(x)=\frac{7 x+4}{5 x-3}, x \neq \frac{3}{5}$ then
$(g \circ f)(3)=$
Solution:
2427 Upvotes
Verified Answer
The correct answer is:
3
$\begin{aligned} \therefore(g \circ f)(x) &=g[f(x)] \\ &=g\left[\frac{3 x+4}{5 x-7}\right] \\ &=\frac{7\left(\frac{3 x+4}{5 x-7}\right)+4}{5\left(\frac{3 x+4}{5 x-7}\right)-3}=\frac{7(3 x+4)+4(5 x-7)}{5(3 x+4)-3(5 x-7)}=\frac{41 x}{41}=x \\ \therefore(g \circ f)(3) &=3 \end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.