Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=b e^{a x}+a e^{b x}$, then $f^{\prime \prime}(0)$ is equal to
MathematicsDifferentiationJEE Main
Options:
  • A 0
  • B $2 \mathrm{ab}$
  • C $a b(a+b)$
  • D ab
Solution:
2268 Upvotes Verified Answer
The correct answer is: $a b(a+b)$
Given,
$$
f(x)=b e^{a x}+a e^{b x}
$$
On differentiating w.r.t. $x$, we get
$$
f^{\prime}(x)=a b e^{a x}+a b e^{b x}
$$
Again, differentiating, we get
$$
$$
\begin{aligned}
\mathrm{f}^{\prime \prime}(\mathrm{x}) &=\mathrm{a}^{2} b \mathrm{e}^{\mathrm{ax}}+\mathrm{ab}^{2} \mathrm{e}^{\mathrm{bx}} \\
\Rightarrow \quad \mathrm{f}^{\prime \prime}(0) &=\mathrm{a}^{2} \mathrm{~b}+\mathrm{ab}^{2} \\
&=\mathrm{ab}(\mathrm{a}+\mathrm{b})
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.