Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\cos ^{-1}\left[\frac{1}{\sqrt{13}}(2 \cos x-3 \sin x)\right]$. Then, $f^{\prime}(0.5)$ is equal to
MathematicsDifferentiationKCETKCET 2013
Options:
  • A $0.5$
  • B 1
  • C 0
  • D $-1$
Solution:
1936 Upvotes Verified Answer
The correct answer is: 1
Given, $f(x)=\cos ^{-1}\left\{\frac{1}{\sqrt{13}}(2 \cos x-3 \sin x)\right\}$
$\Rightarrow f(x)=\cos ^{-1}\left\{\frac{2}{\sqrt{13}} \cos x-\frac{3}{\sqrt{13}} \sin x\right\}$



$\Rightarrow \quad f(x)=\cos ^{-1}\{\cos \alpha \cdot \cos x-\sin \alpha \cdot \sin x\}$
$\begin{aligned}
&=\cos ^{-1}\{\cos (x+\alpha)\} \\
&=x+\alpha
\end{aligned}$
On differentiating w.r.t. $x$, we get
$\begin{aligned}
f^{\prime}(x) &=1=\text { constant value } \\
\therefore \quad f^{\prime}(0.5) &=1
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.