Search any question & find its solution
Question:
Answered & Verified by Expert
If $f(x)=(\cos x)(\cos 2 x) \ldots(\cos n x)$ then $f^{\prime}(x)+\sum_{r=1}^n(r \tan r x) f(x)$ is equal to
Options:
Solution:
1545 Upvotes
Verified Answer
The correct answer is:
0
$f(x)=(\cos x)(\cos 2 x) \ldots(\cos n x)$
$f^{\prime}(x)=-\sin x \cdot \cos 2 x \ldots \cos n x$ $+\cos x \frac{d}{d x}\{\cos 2 x \cdot \cos 3 x \ldots \cos n x\}$
$f^{\prime}(x)=-\sin x \cdot \cos 2 x \ldots \cos n x$ $+\cos x[-2 \sin 2 x \cdot \cos 3 x \ldots \cos n x$ $\left.+\cos 2 x \frac{d}{d x} \cos 3 x \cdot \cos 4 x \ldots \cos n x\right]$
$f^{\prime}(x) \Rightarrow-(\sin x \cdot \cos 2 x \ldots \cos n x)$ $-(2 \cos x \cdot \sin 2 x \cdot \cos 3 x \ldots \cos n x)$ $+\cos x \cdot \cos 2 x \frac{d}{d x}(\cos 3 x \cdot \cos 4 x \cdot \cos n x)$
$f^{\prime}(x) \Rightarrow-(\sin x \cdot \cos 2 x \ldots \cos n x)$ $-(2 \cos x \cdot \sin 2 x \ldots \cos n x)$ $-(3 \cos x \cdot \cos 2 x \cdot \sin 3 x \ldots \cos n x)$ $-(n \cos x \cdot \cos 2 x \ldots \sin n x)$
So,
$\Rightarrow f^{\prime}(x)+\sum_{r=1}^n(r \tan r x) f(x)$
$=f^{\prime}(x)+\{\tan x+2 \tan 2 x+3 \tan 3 x$ $+\ldots+n \tan n x\} f(x)$
$=f^{\prime}(x)+f(x) \tan x+2 f(x) \tan 2 x$ $+\ldots+n f(x) \tan n x$
$=f^{\prime}(x)+[(\sin x \cdot \cos 2 x \ldots \cos n x)$ $+(2 \cos x \cdot \sin 2 x \ldots \cos n x)$ $+\ldots+(n \cos x \cdot \cos 2 x \ldots \sin n x)]$
$=f^{\prime}(x)-f^{\prime}(x)$
$\Rightarrow 0$
Hence, $f^{\prime}(x)+\sum_{r=1}^n(r \tan r x) f(x)=0$
$f^{\prime}(x)=-\sin x \cdot \cos 2 x \ldots \cos n x$ $+\cos x \frac{d}{d x}\{\cos 2 x \cdot \cos 3 x \ldots \cos n x\}$
$f^{\prime}(x)=-\sin x \cdot \cos 2 x \ldots \cos n x$ $+\cos x[-2 \sin 2 x \cdot \cos 3 x \ldots \cos n x$ $\left.+\cos 2 x \frac{d}{d x} \cos 3 x \cdot \cos 4 x \ldots \cos n x\right]$
$f^{\prime}(x) \Rightarrow-(\sin x \cdot \cos 2 x \ldots \cos n x)$ $-(2 \cos x \cdot \sin 2 x \cdot \cos 3 x \ldots \cos n x)$ $+\cos x \cdot \cos 2 x \frac{d}{d x}(\cos 3 x \cdot \cos 4 x \cdot \cos n x)$
$f^{\prime}(x) \Rightarrow-(\sin x \cdot \cos 2 x \ldots \cos n x)$ $-(2 \cos x \cdot \sin 2 x \ldots \cos n x)$ $-(3 \cos x \cdot \cos 2 x \cdot \sin 3 x \ldots \cos n x)$ $-(n \cos x \cdot \cos 2 x \ldots \sin n x)$
So,
$\Rightarrow f^{\prime}(x)+\sum_{r=1}^n(r \tan r x) f(x)$
$=f^{\prime}(x)+\{\tan x+2 \tan 2 x+3 \tan 3 x$ $+\ldots+n \tan n x\} f(x)$
$=f^{\prime}(x)+f(x) \tan x+2 f(x) \tan 2 x$ $+\ldots+n f(x) \tan n x$
$=f^{\prime}(x)+[(\sin x \cdot \cos 2 x \ldots \cos n x)$ $+(2 \cos x \cdot \sin 2 x \ldots \cos n x)$ $+\ldots+(n \cos x \cdot \cos 2 x \ldots \sin n x)]$
$=f^{\prime}(x)-f^{\prime}(x)$
$\Rightarrow 0$
Hence, $f^{\prime}(x)+\sum_{r=1}^n(r \tan r x) f(x)=0$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.