Search any question & find its solution
Question:
Answered & Verified by Expert
If $f(x)=\frac{e^{2 x}-e^{-2 x}}{e^{3 x}+e^{-3 x}}$, then $f^{\prime}(0)=$
Options:
Solution:
2118 Upvotes
Verified Answer
The correct answer is:
$2$
$\begin{aligned} f(x) & =\frac{e^{2 x}-e^{-2 x}}{e^{3 x}+e^{-3 x}} \\ \Rightarrow f^{\prime}(x) & =\frac{\left(e^{3 x}+e^{-3 x}\right)\left(2 e^{2 x}+2 e^{-2 x}\right)}{\left(e^{2 x}-e^{-2 x}\right)\left(3 e^{3 x}-3 e^{-3 x}\right)} \\ \Rightarrow f^{\prime}(0) & =\frac{(1+1)(2 \cdot 1+2 \cdot 1)-(1-1)(3 \cdot 1-3 \cdot 1)}{(1+1)^2} \\ & =\frac{8}{4}=2 .\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.