Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If fx+k is obtained by evaluating x31+x23dx, using the substitution x=tanθ and gx+c is obtained by evaluating x31+x23dx, using the substitution x2+1=z, then fx-gx+k-c=
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2021 (05 Aug Shift 2)
Options:
  • A 14
  • B any constant
  • C any function of x
  • D x1+x2
Solution:
1382 Upvotes Verified Answer
The correct answer is: any constant

I1=x31+x23dx = fx+k 

x=tanθ

dx=sec2θdθ

I1=tan2θsec2θdθ1+tan2θ3

I1=tan3θsec2θdθsec6θ

I1=sin3θcosθdθ

Let sinθ=p

cosθdθ=dp

I1=p3dp=p44+k

I1=sin4θ4+k    

I1=sin4tan-1x4+k

Let tan-1x=αx=tanα

sinα=x1+x2

sin4α4=x441+x2+k=fx+k

Now fx=x441+x2

I1=x31+x23dx =gx+c 

Let 1+x2=zx2=z-1

xdx=12dz

I1=12z-1z3dz

I1=121z2-1z3dz

I1=12-1z+12z2

I1=12-11+x2+121+x22

I1=-2x2-14x2+12+c=g(x)+c

g(x)=-2x2-14x2+12

Now fx-gx+k-c=x441+x2--2x2-14x2+12

=x4+2x2+14x2+12+k-c

=14+k-c

Hence, it is a constant.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.