Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\frac{(81)^{x}-(9)^{x}}{(k)^{x}-1}$ if $x \neq 0$
$=2 \quad$ if $\quad x=0$
is continuous at $x=0$, then the value of $k$ is
MathematicsContinuity and DifferentiabilityMHT CETMHT CET 2020 (14 Oct Shift 1)
Options:
  • A 3
  • B 9
  • C 2
  • D 4
Solution:
2679 Upvotes Verified Answer
The correct answer is: 3
$\lim _{x \rightarrow 0} \frac{81^{x}-9^{x}}{k^{x}-1}=2$
$\therefore \lim _{x \rightarrow 0} \frac{9^{x}\left(9^{x}-1\right)}{k^{x}-1}=2 \Rightarrow \frac{\left(\lim _{x \rightarrow 0} 9^{x}\right)\left(\lim _{x \rightarrow 0} \frac{9^{x}-1}{x}\right)}{\lim _{x \rightarrow 0} \frac{k^{x}-1}{x}}=2$
$\frac{\log 9}{\log k}=2 \Rightarrow \log 9=2 \log k \Rightarrow \log k^{2}=\log 9 \Rightarrow k^{2}=9 \Rightarrow k=3$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.