Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\log _{x^{2}}(\log x)$, then $f^{\prime}(x)$ at $x=e$ is
MathematicsDifferentiationCOMEDKCOMEDK 2015
Options:
  • A 0
  • B 1
  • C $\frac{1}{e}$
  • D $\frac{1}{2 e}$
Solution:
2703 Upvotes Verified Answer
The correct answer is: $\frac{1}{2 e}$
We have, $f(x)=\log _{x^{2}}(\log x)$
$\Rightarrow \quad f(x)=\frac{1}{2}\left[\log _{x}(\log x)\right] \quad\left[\because \log _{a^{n}} b=\frac{1}{n} \log _{a} b\right]$
$\Rightarrow \quad f(x)=\frac{1}{2}\left[\frac{\log (\log x)}{\log x}\right] \quad\left(\because \log _{a} b=\frac{\log b}{\log a}\right)$
$\Rightarrow f^{\prime}(x)=\frac{1}{2}\left[\frac{\log (x) \frac{d}{d x}[\log (\log (x))]-\log (\log x) \frac{d}{d x} \log x}{(\log x)^{2}}\right]$
$=\frac{1}{2}\left[\frac{\log (x) \frac{1}{\log x} \times \frac{1}{x}-\left(\log (\log x) \frac{1}{x}\right)}{(\log x)^{2}}\right]$
$=\frac{1}{2}\left[\frac{\frac{1}{x}-\frac{\log (\log (x))}{x}}{(\log x)^{2}}\right]$
$\Rightarrow \quad f^{\prime}(x)=\frac{1}{2}\left[\frac{1-\log \log (x)}{x(\log x)^{2}}\right]$
$\Rightarrow \quad f^{\prime}(e)=\frac{1}{2}\left[\frac{1-\log \log (e)}{e(\log e)^{2}}\right]=\frac{1}{2}\left[\frac{1-0}{e}\right]=\frac{1}{2 e}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.