Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\sin ^{2} x^{2}$, then what is $f^{\prime}(x)$ equal to?
MathematicsApplication of DerivativesNDANDA 2009 (Phase 1)
Options:
  • A $4 x \sin \left(x^{2}\right) \cos \left(x^{2}\right)$
  • B $2 \sin \left(x^{2}\right) \cos \left(x^{2}\right)$
  • C $4 \sin \left(x^{2}\right) \sin ^{2} x$
  • D $2 \mathrm{x} \cos ^{2}\left(\mathrm{x}^{2}\right)$
Solution:
1505 Upvotes Verified Answer
The correct answer is: $4 x \sin \left(x^{2}\right) \cos \left(x^{2}\right)$
Given $f(x)=\sin ^{2} x^{2}$
$\therefore f^{\prime}(x)=2 \sin x^{2} \cos x^{2} \cdot 2 x$
$=4 x \sin x^{2} \cos x^{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.