Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f^{\prime}(x)=\sin (\log x)$ and $y=f\left(\frac{2 x+3}{3-2 x}\right)$, then $\frac{d y}{d x}$ equals
MathematicsDifferentiationJEE MainJEE Main 2012 (12 May Online)
Options:
  • A
    $\sin \left[\log \left(\frac{2 x+3}{3-2 x}\right)\right]$
  • B
    $\frac{12}{\left(3-2 x^2\right)}$
  • C
    $\frac{12}{\left(3-2 x^2\right)} \sin \left[\log \left(\frac{2 x+3}{3-2 x}\right)\right]$
  • D
    $\frac{12}{\left(3-2 x^2\right.} \cos \left[\log \left(\frac{2 x+3}{3-2 x}\right)\right]$
Solution:
2999 Upvotes Verified Answer
The correct answer is:
$\frac{12}{\left(3-2 x^2\right)} \sin \left[\log \left(\frac{2 x+3}{3-2 x}\right)\right]$
Let $f^{\prime}(x)=\sin [\log x]$ and $y=f\left(\frac{2 x+3}{3-2 x}\right)$
Now, $\frac{d y}{d x}=f^{\prime}\left(\frac{2 x+3}{3-2 x}\right) \cdot \frac{d}{d x}\left(\frac{2 x+3}{3-2 x}\right)$
$$
\begin{aligned}
& =\sin \left[\log \left(\frac{2 x+3}{3-2 x}\right)\right] \frac{[(6-4 x-)-4 x-6]}{\left(3-2 x^2\right)} \\
& =\frac{12}{\left(3-2 x^2\right.} \cdot \sin \left[\log \left(\frac{2 x+3}{3-2 x}\right)\right]
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.