Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\sin (\sin x)$ and $f^{\prime \prime}(x)+\tan x f^{\prime}(x)+g(x)$ $=0$, then $g(x)$ is :
MathematicsDifferentiationJEE MainJEE Main 2013 (23 Apr Online)
Options:
  • A
    $\cos ^2 x \cos (\sin x)$
  • B
    $\sin ^2 x \cos (\cos x)$
  • C
    $\sin ^2 x \sin (\cos x)$
  • D
    $\cos ^2 x \sin (\sin x)$
Solution:
1302 Upvotes Verified Answer
The correct answer is:
$\cos ^2 x \sin (\sin x)$
$$
\begin{aligned}
& \text { } f(x)=\sin (\sin x) \\
& \Rightarrow f^{\prime}(x)=\cos (\sin x) \cdot \cos x \\
& \Rightarrow f^{\prime \prime}(x)=-\sin (\sin x) \cdot \cos ^2 x+\cos (\sin x) \text {. } \\
& (-\sin x) \\
& =-\cos ^2 x \cdot \sin (\sin x)-\sin x \cdot \cos (\sin x) \\
& \text { Now } f^{\prime \prime}(x)+\tan x . f^{\prime}(x)+g(x)=0 \\
& \Rightarrow g(x)=\cos ^2 x \cdot \sin (\sin x)+\sin x \cdot \cos (\sin x) \\
& -\tan x \cdot \cos x \cdot \cos (\sin x) \\
& \Rightarrow g(x)=\cos ^2 x \cdot \sin (\sin x) \text {. } \\
&
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.