Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\sin \left(\tan ^{-1} x\right)$, then $\int_0^1 x f^{\prime \prime}(x) d x=$
MathematicsDefinite IntegrationAP EAMCETAP EAMCET 2022 (07 Jul Shift 2)
Options:
  • A $1-\frac{3}{2 \sqrt{2}}$
  • B $-\frac{1}{2 \sqrt{2}}$
  • C $\frac{1}{\sqrt{2}}$
  • D $-\sqrt{2}$
Solution:
1256 Upvotes Verified Answer
The correct answer is: $-\frac{1}{2 \sqrt{2}}$
$\begin{aligned} f(x) & =\sin \left(\tan ^{-1} x\right) \\ f^{\prime}(x) & =\frac{\cos \left(\tan ^{-1} x\right)}{x^2+1} \\ I & =\int_0^1 x \cdot f^{\prime \prime}(x) d x={ }_0^1\left[x \cdot f^{\prime}(x)\right]-\int_0^1 f^{\prime}(x) d x \\ & =f^{\prime}(1)-{ }_0^1[f(x)]=\frac{1}{2 \sqrt{2}}-\frac{1}{\sqrt{2}} \\ & =-\frac{1}{2 \sqrt{2}}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.